Dr. Julian Dailly

Dr. M. Marrony

Reversibility approach based on proton conducting ceramic cells

18-23.09.2016 | EIFER - SSPC18

Materials & Processing

Classical (Ba, Ce)-based perovskite materials Wet chemical routes

Reversibility & Reliability

Evaluation of performances Reversibility at 600°C and 700°C

Conclusions & Prospects

Actual topic → management of use/storage of renewable energies

An efficient solution consists in the combination of a Fuel Cell and an Electrolyser.

Which technology for the reversiblity?

PEM and SOC-based systems at demo level but...

Materials & Processing

Materials

Choice of classical perovskite: (Ba, Ce)-based materials

Electrolyte

Compromise between the chemical (CO₂) tolerance of BaZr_{0.9}Y_{0.1}O_{3-δ} and good conductivity of BaCe_{0.9}Y_{0.1}O_{3-δ} \Rightarrow BaCe_{0.8}Zr_{0.1}Y_{0.1}O_{3-δ}BCZY81 (+5%wt ZnO as sintering aid) Bilayer air electrode Composite BCZY81 / BSCF + Ba_{0.5}Sr_{0.5}Co_{0,8}Fe_{0.2}O_{3-δ} Hydrogen electrode Cermet NiO-BCZY81 (60/40%wt)

Use of the electrolyte material into the electrodes to reduce mechanical stress and improve the chemical compatibility

All these products can be manufactured by industrials at kg scale!

18-23.09.2016 | EIFER – SSPC18

Processing

H₂ electrode-supported cells: planar configuration using industrial processes

Wet chemical routes: tape casting and screen printing \rightarrow easy to transfer and low cost

M. Marrony, M. Ancelin, G. Lefèvre, J. Dailly, "Elaboration of intermediate size planar proton conducting solid oxide cell by wet chemical routes: A way to industrialization", Solid State Ionics, 275 (2015) 97-100.

18-23.09.2016 | EIFER – SSPC18

Experimental conditions

10

Cedf 🛛 🕹 🕹

EIFER

Evaluation of performances

AA

(c<u>m²</u>)

2

Т

(°C)

Reversibility at 600°C → Comparison of IV-curves

Electrical degradation under both Electrolysis and Fuel Cell conditions

➔ Logical behaviour

Voltage instability lead to high degradation rate:

→ Optimisation of water supply
→ Periodicity of cycles

Reversibility at 700°C → Evolution of E (V)

PCFC mode:

-Electrical degradation comes from the reversibility

PCEC mode:

-Electrical degradation comes from the galvanostatic period -Kind of recovery between each cycle

Hypothesis: link with the amount of water?

→ High steam conversion: higher stress

→Circulation of water vapor: microstructure

→ Stability of materials under polarization/RH

Reversibility at 700°C → Impact on the cell behavior

Measurement of the electrical degradation before / under / after the reversibility period

→Electrical degradation is higher under electrolysisgalvanostatic than under reversible condition

→Correlation with previous conclusions: electrolysisgalvanostatic periods are harder for the cell

Insertion of period in Fuel Cell mode as recovery period...?

Conclusions & Prospects

Conclusions & Prospects

Conclusions

- Combination of well-known materials and processings: elaboration of good quality cells (20cm²)
- Good electrochemical performances: P=235mW/cm², E=0,8V @700°C
- Dynamic reversible concept with low electrical degradation -1.4%/kh
 - > Quality of water vapor is of great influence on the electrical degradation (voltage instability)
 - > Improvement of electrolysis-galvanostatic conditions

Prospects

Materials & Processing

- Advanced materials to improve the performances: BaCe_{1-x-y}Z_x(Y,Yb)_yO_{3-δ}, (Sm, Ba)_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5}O_{5+δ}
- Up-scaling: improve the manufacture of 50 cm²-sized PCC: SSRS, nano-infiltration

Reversibility & Reliability

- Improve the stability under electrolysis/regenerative profile:
 - > Influence of water: steam conversion, microstructure, chemical stability under i/RH
- Impedance measurements to better understand the behaviour: focus on the air electrode side...
- Post-Mortem analysis: link between microstructure and electrical degradation

Thank you...

Contact

Dr. Julian Dailly dailly@eifer.org +49 (0)721 - 6105 1352

EIFER Emmy-Noether-Straße 11

76131 Karlsruhe Germany www.eifer.org

Copyright © EIFER 2016

